资源类型

期刊论文 220

会议视频 7

年份

2024 1

2023 16

2022 16

2021 27

2020 16

2019 15

2018 17

2017 16

2016 12

2015 13

2014 6

2013 9

2012 7

2011 7

2010 6

2009 4

2008 11

2007 4

2006 1

2005 2

展开 ︾

关键词

煤化工 4

化工 3

绿色化工 3

化学反应 2

化学吸收 2

化学循环 2

战略 2

EPC(engineering procurement construction) 1

IPMT 1

SOFC 1

k-最近邻分类 1

丙烯 1

中国石化 1

中草药化学成分 1

中药 1

主成分分析 1

乙烯 1

二氧化碳 1

二氧化碳利用 1

展开 ︾

检索范围:

排序: 展示方式:

Numerical simulation and experimental verification of chemical reactions for SCR DeNO

Qiang ZHANG, Yonglin FAN, Wenyan LI

《化学科学与工程前沿(英文)》 2010年 第4卷 第4期   页码 523-528 doi: 10.1007/s11705-010-0520-y

摘要: Selective catalytic reduction (SCR) is a major commercial technology for NO removal in power plants. There are a lot of complex chemical reactions in SCR reactors, and it is of great significance to understand the internal process of chemical reactions for SCR DeNO and study the impact of various factors on NO removal efficiency. In this paper, the impact of reaction temperature, ammonia-nitrogen molar ratio and resident time in the catalyst bed layer on NO removal efficiency were studied by simulation of chemical reactions. Then calculated results were compared with catalyst activity test data in a power plant, which proved that the simulated results were accurate. As a result, the reaction conditions were optimized in order to get the best removal efficiency of NO, so that we can provide a reference for optimal running of SCR in power plants.

关键词: SCR     NOx     removal efficiency     chemical reactions     simulation    

Chemical reactions of oily sludge catalyzed by iron oxide under supercritical water gasification condition

《化学科学与工程前沿(英文)》 2022年 第16卷 第6期   页码 886-896 doi: 10.1007/s11705-021-2125-z

摘要: Supercritical water gasification is a promising technology in dealing with the degradation of hazardous waste, such as oily sludge, accompanied by the production of fuel gases. To evaluate the mechanism of Fe2O3 catalyst and the migration pathways of heteroatoms and to investigate the systems during the process, reactive force field molecular dynamics simulations are adopted. In terms of the catalytic mechanisms of Fe2O3, the surface lattice oxygen is consumed by small carbon fragments to produce CO and CO2, improving the catalytic performance of the cluster due to more unsaturated coordination Fe sites exposed. Lattice oxygen combines with •H radicals to form water molecules, improving the catalytic performance. Furthermore, the pathway of asphaltene degradation was revealed at an atomic level, as well as products. Moreover, the adsorption of hydroxyl radical on the S atom caused breakage of the two C–S bonds in turn, forming •HSO intermediate, so that the organic S element was fixed into the inorganic liquid phase. The heteroatom O was removed under the effects of supercritical water. Heavy metal particles presented in the oily sludge, such as iron in association with Fe2O3 catalyst, helped accelerate the degradation of asphaltenes.

关键词: oily sludge     SCWG     ReaxFF     Fe2O3     heteroatoms    

Sustainable functionalization and modification of materials via multicomponent reactions in water

《化学科学与工程前沿(英文)》 2022年 第16卷 第9期   页码 1318-1344 doi: 10.1007/s11705-022-2150-6

摘要: In materials chemistry, green chemistry has established firm ground providing essential design criteria to develop advanced tools for efficient functionalization and modification of materials. Particularly, the combination of multicomponent reactions in water and aqueous media with materials chemistry unlocks a new sustainable way for constructing multi-functionalized structures with unique features, playing significant roles in the plethora of applications. Multicomponent reactions have received significant consideration from the community of material chemistry because of their great efficiency, simple operations, intrinsic molecular diversity, and an atom and a pot economy. Also, by rational design of multicomponent reactions in water and aqueous media, the performance of some multicomponent reactions could be enhanced by the contributing “natural” form of water-soluble materials, the exclusive solvating features of water, and simple separating and recovering materials. To date, there is no exclusive review to report the sustainable functionalization and modification of materials in water. This critical review highlights the utility of various kinds of multicomponent reactions in water and aqueous media as green methods for functionalization and modification of siliceous, magnetic, and carbonaceous materials, oligosaccharides, polysaccharides, peptides, proteins, and synthetic polymers. The detailed discussion of synthetic procedures, properties, and related applicability of each functionalized/modified material is fully deliberated in this review.

关键词: materials     multicomponent reactions     modification     functionalization     water    

Redox reactions of iron and manganese oxides in complex systems

Jianzhi Huang, Huichun Zhang

《环境科学与工程前沿(英文)》 2020年 第14卷 第5期 doi: 10.1007/s11783-020-1255-8

摘要: • Mechanisms of redox reactions of Fe- and Mn-oxides were discussed. • Oxidative reactions of Mn- and Fe-oxides in complex systems were reviewed. • Reductive reaction of Fe(II)/iron oxides in complex systems was examined. • Future research on examining the redox reactivity in complex systems was suggested. Conspectus Redox reactions of Fe- and Mn-oxides play important roles in the fate and transformation of many contaminants in natural environments. Due to experimental and analytical challenges associated with complex environments, there has been a limited understanding of the reaction kinetics and mechanisms in actual environmental systems, and most of the studies so far have only focused on simple model systems. To bridge the gap between simple model systems and complex environmental systems, it is necessary to increase the complexity of model systems and examine both the involved interaction mechanisms and how the interactions affected contaminant transformation. In this Account, we primarily focused on (1) the oxidative reactivity of Mn- and Fe-oxides and (2) the reductive reactivity of Fe(II)/iron oxides in complex model systems toward contaminant degradation. The effects of common metal ions such as Mn2+ , Ca2+, Ni2+, Cr3+ and Cu2+, ligands such as small anionic ligands and natural organic matter (NOM), and second metal oxides such as Al, Si and Ti oxides on the redox reactivity of the systems are briefly summarized.

关键词: Iron oxides     manganese oxides     reduction     oxidation     complex systems     reaction kinetics and mechanisms    

Kinetic Monte Carlo simulations of plasma-surface reactions on heterogeneous surfaces

Daniil Marinov

《化学科学与工程前沿(英文)》 2019年 第13卷 第4期   页码 815-822 doi: 10.1007/s11705-019-1837-9

摘要: Reactions of atoms and molecules on chamber walls in contact with low temperature plasmas are important in various technological applications. Plasma-surface interactions are complex and relatively poorly understood. Experiments performed over the last decade by several groups prove that interactions of reactive species with relevant plasma-facing materials are characterized by distributions of adsorption energy and reactivity. In this paper, we develop a kinetic Monte Carlo (KMC) model that can effectively handle chemical kinetics on such heterogenous surfaces. Using this model, we analyse published adsorption-desorption kinetics of chlorine molecules and recombination of oxygen atoms on rotating substrates as a test case for the KMC model.

关键词: plasma-surface interaction     kinetic Monte Carlo     plasma nano technology    

Solar fuel from photo-thermal catalytic reactions with spectrum-selectivity: a review

Sanli TANG, Jie SUN, Hui HONG, Qibin LIU

《能源前沿(英文)》 2017年 第11卷 第4期   页码 437-451 doi: 10.1007/s11708-017-0509-z

摘要: Solar fuel is one of the ideal energy sources in the future. The synergy of photo and thermal effects leads to a new approach to higher solar fuel production under relatively mild conditions. This paper reviews different approaches for solar fuel production from spectrum-selective photo-thermal synergetic catalysis. The review begins with the meaning of synergetic effects, and the mechanisms of spectrum-selectivity and photo-thermal catalysis. Then, from a technical perspective, a number of experimental or theoretical works are sorted by the chemical reactions and the sacrificial reagents applied. In addition, these works are summarized and tabulated based on the operating conditions, spectrum-selectivity, materials, and productivity. A discussion is finally presented concerning future development of photo-thermal catalytic reactions with spectrum-selectivity.

关键词: photo-thermal catalysis     spectrum-selectivity     solar fuel     full-spectrum    

Reactivity of Pyrogenic Carbonaceous Matter (PCM) in mediating environmental reactions: Current knowledge

Wenqing Xu, Mark L. Segall, Zhao Li

《环境科学与工程前沿(英文)》 2020年 第14卷 第5期 doi: 10.1007/s11783-020-1265-6

摘要: Abstract • Pyrogenic Carbonaceous Matter (PCM) promote both chemical and microbial synergies. • Discussion of PCM-enhanced abiotic transformation pathways of organic pollutants. • Conjugated microporous polymers (CMPs) can mimic the performance of PCM. • CMPs offer a platform that allows for systematic variation of individual properties. Pyrogenic Carbonaceous matter (PCM; e.g., black carbon, biochar, and activated carbon) are solid residues from incomplete combustion of fossil fuel or biomass. They are traditionally viewed as inert adsorbents for sequestering contaminants from the aqueous phase or providing surfaces for microbes to grow. In this account, we reviewed the recently discovered reactivity of PCM in promoting both chemical and microbial synergies that are important in pollutant transformation, biogeochemical processes of redox-active elements, and climate change mitigation with respect to the interaction between biochar and nitrous oxide (N2O). Moreover, we focused on our group’s work in the PCM-enhanced abiotic transformation of nitrogenous and halogenated pollutants and conducted in-depth analysis of the reaction pathways. To understand what properties of PCM confer its reactivity, our group pioneered the use of PCM-like polymers, namely conjugated microporous polymers (CMPs), to mimic the performance of PCM. This approach allows for the controlled incorporation of specific surface properties (e.g., quinones) into the polymer network during the polymer synthesis. As a result, the relationship between specific characteristics of PCM and its reactivity in facilitating the decay of a model pollutant was systematically studied in our group’s work. The findings summarized in this account help us to better understand an overlooked environmental process where PCM synergistically interacts with various environmental reagents such as hydrogen sulfide and water. Moreover, the knowledge gained in these studies could inform the design of a new generation of reactive carbonaceous materials with tailored properties that are highly efficient in contaminant removal.

关键词: pyrogenic carbonaceous matter     Conjugated microporous polymer     remediation     Biochar     Hydrolysis     Pollutant degradation    

Review of plasma-assisted reactions and potential applications for modification of metal–organic frameworks

Tingting Zhao, Niamat Ullah, Yajun Hui, Zhenhua Li

《化学科学与工程前沿(英文)》 2019年 第13卷 第3期   页码 444-457 doi: 10.1007/s11705-019-1811-6

摘要: Plasma catalysis is drawing increasing attention worldwide. Plasma is a partially ionized gas comprising electrons, ions, molecules, radicals, and photons. Integration of catalysis and plasma can enhance catalytic activity and stability. Some thermodynamically unfavorable reactions can easily occur with plasma assistance. Compared to traditional thermal catalysis, plasma reactors can save energy because they can be operated at much lower temperatures or even room temperature. Additionally, the low bulk temperature of cold plasma makes it a good alternative for treatment of temperature-sensitive materials. In this review, we summarize the plasma-assisted reactions involved in dry reforming of methane, CO methanation, the methane coupling reaction, and volatile organic compound abatement. Applications of plasma for modification of metal–organic frameworks are discussed.

关键词: plasma catalysis     methane     carbon dioxide     VOCs     metal–organic frameworks    

Easy access to pharmaceutically relevant heterocycles by catalytic reactions involving

Ximei Zhao, Matthias Rudolph, Abdullah M. Asiri, A. Stephen K. Hashmi

《化学科学与工程前沿(英文)》 2020年 第14卷 第3期   页码 317-349 doi: 10.1007/s11705-019-1874-4

摘要: This review summarizes recent advances in the field of gold-catalyzed synthesis of pharmaceutically relevant aza-heterocycles via generated -imino gold carbene complexes as intermediates.

关键词: gold     heterocycles     alkynes    

Catalyst particle shapes and pore structure engineering for hydrodesulfurization and hydrodenitrogenation reactions

《化学科学与工程前沿(英文)》 2022年 第16卷 第6期   页码 897-908 doi: 10.1007/s11705-021-2127-x

摘要: Catalyst particle shapes and pore structure engineering are crucial for alleviating internal diffusion limitations in the hydrodesulfurization (HDS)/hydrodenitrogenation (HDN) of gas oil. The effects of catalyst particle shapes (sphere, cylinder, trilobe, and tetralobe) and pore structures (pore diameter and porosity) on HDS/HDN performance at the particle scale are investigated via mathematical modeling. The relationship between particle shape and effectiveness factor is first established, and the specific surface areas of different catalyst particles show a positive correlation with the average HDS/HDN reaction rates. The catalyst particle shapes primarily alter the average HDS/HDN reaction rate to adjust the HDS/HDN effectiveness factor. An optimal average HDS/HDN reaction rate exists as the catalyst pore diameter and porosity increase, and this optimum value indicates a tradeoff between diffusion and reaction. In contrast to catalyst particle shapes, the catalyst pore diameter and the porosity of catalyst particles primarily alter the surface HDS/HDN reaction rate to adjust the HDS/HDN effectiveness factor. This study provides insights into the engineering of catalyst particle shapes and pore structures for improving HDS/HDN catalyst particle efficiency.

关键词: hydrodesulfurization     hydrodenitrogenation     particle shape     pore structure    

Kinetics and mechanisms of reactions for hydrated electron with chlorinated benzenes in aqueous solution

Haixia YUAN,Huxiang PAN,Jin SHI,Hongjing LI,Wenbo DONG

《环境科学与工程前沿(英文)》 2015年 第9卷 第4期   页码 583-590 doi: 10.1007/s11783-014-0691-8

摘要: The reactions between chlorinated benzenes (CBzs) and hydrated electron ( ) were investigated by the electron beam (EB) and laser flash photolysis (LFP) experiments. Under the EB irradiation, the effects of irradiation dose, initial concentration and the number of Cl atoms on the removal efficiencies were further examined. At 10 kGy, the removal efficiencies of mono-CB, 1,3-diCB, 1,2-diCB and 1,4-diCB were 41.2%, 87.2%, 84.0%, and 84.1%, respectively. While irradiation dose was 50 kGy, the removal efficiencies increased to 47.4%, 95.8%, 95.0%, and 95.2%, respectively. Irradiation of CBzs solutions has shown that the higher the initial concentration, the lower the percentage of CBzs removal. In addition to this, the dechlorination efficiencies of 1,2-dichlorobenzene (1,2-diCB), 1,3-dichlorobenzene (1,3-diCB) and 1,4-dichlorobenzene (1,4-diCB) were much higher than that of chlorobenzene (mono-CB). The kinetics of the reactions was achieved with nanosecond LFP. The rate constants of second-order reaction between with mono-CB, 1,2-diCB, 1,3-diCB and 1,4-diCB were (5.3±0.4) × 10 , (4.76±0.1) × 10 , (1.01±0.1) × 10 and (3.29±0.2) × 10 L·mol ·s , respectively. Density functional theory (DFT) calculations were performed to determine the optical properties of unstable CBzs anion radicals, and the main absorption peaks lied in the range of 300–550 nm. The primary reaction pathway of CBzs with was gradual dechlorination, and the major products were Cl and benzene (CBzs(-Cl )). Furthermore, biphenyl (or chlorobiphenyl) was observed during the LFP, which was probably formed by recombination of benzene radicals.

关键词: chlorinated benzenes     hydrated electron     electron beam     laser flash photolysis    

Hydroxyl radical-involved cancer therapy via Fenton reactions

《化学科学与工程前沿(英文)》 2022年 第16卷 第3期   页码 345-363 doi: 10.1007/s11705-021-2077-3

摘要: The tumor microenvironment features over-expressed hydrogen peroxide (H2O2). Thus, versatile therapeutic strategies based on H2O2 as a reaction substrate to generate hydroxyl radical (•OH) have been used as a prospective therapeutic method to boost anticancer efficiency. However, the limited Fenton catalysts and insufficient endogenous H2O2 content in tumor sites greatly hinder •OH production, failing to achieve the desired therapeutic effect. Therefore, supplying Fenton catalysts and elevating H2O2 levels into cancer cells are effective strategies to improve •OH generation. These therapeutic strategies are systematically discussed in this review. Furthermore, the challenges and future developments of hydroxyl radical-involved cancer therapy are discussed to improve therapeutic efficacy.

关键词: hydroxyl radical     Fenton catalyst     hydrogen peroxide     cancer therapy    

Special issue on “Green chemical process and intensification”

《化学科学与工程前沿(英文)》 2022年 第16卷 第11期   页码 1533-1535 doi: 10.1007/s11705-022-2263-y

Special Issue for the Future Chemical Engineering Scholars of Global Chinese Chemical Engineering Symposium

《化学科学与工程前沿(英文)》 2022年 第16卷 第6期   页码 775-776 doi: 10.1007/s11705-022-2172-0

Insight of chemical environmental risk and its management from the vinyl chloride accident

《环境科学与工程前沿(英文)》 2023年 第17卷 第4期 doi: 10.1007/s11783-023-1652-x

摘要: The combustion of vinyl chloride (VC) after the train derailment accident in Ohio, USA in February, 2023 has caused widespread concern around the world. This paper tried to analyze several issues concerning the accident, including the appropriateness of the VC combustion in the emergency response in this accident, the meanings of so-called “controlled combustion”, the potential environmental risks caused by VC and combustion by-products, and follow-up work. In our view, this accident had surely caused environmental and health risks to some extent. Hence, a comprehensive environmental risk assessment is necessary, and then the site with risk should be comprehensively remediated, hazardous waste should be harmlessly treated as soon as possible. Finally, this accident suggests that further efforts should be taken to bridge the gap between chemical safety management and their environmental risk management.

关键词: Vinyl chloride     Combustion     Chemical safety management     Environmental risk     Emerging contaminants    

标题 作者 时间 类型 操作

Numerical simulation and experimental verification of chemical reactions for SCR DeNO

Qiang ZHANG, Yonglin FAN, Wenyan LI

期刊论文

Chemical reactions of oily sludge catalyzed by iron oxide under supercritical water gasification condition

期刊论文

Sustainable functionalization and modification of materials via multicomponent reactions in water

期刊论文

Redox reactions of iron and manganese oxides in complex systems

Jianzhi Huang, Huichun Zhang

期刊论文

Kinetic Monte Carlo simulations of plasma-surface reactions on heterogeneous surfaces

Daniil Marinov

期刊论文

Solar fuel from photo-thermal catalytic reactions with spectrum-selectivity: a review

Sanli TANG, Jie SUN, Hui HONG, Qibin LIU

期刊论文

Reactivity of Pyrogenic Carbonaceous Matter (PCM) in mediating environmental reactions: Current knowledge

Wenqing Xu, Mark L. Segall, Zhao Li

期刊论文

Review of plasma-assisted reactions and potential applications for modification of metal–organic frameworks

Tingting Zhao, Niamat Ullah, Yajun Hui, Zhenhua Li

期刊论文

Easy access to pharmaceutically relevant heterocycles by catalytic reactions involving

Ximei Zhao, Matthias Rudolph, Abdullah M. Asiri, A. Stephen K. Hashmi

期刊论文

Catalyst particle shapes and pore structure engineering for hydrodesulfurization and hydrodenitrogenation reactions

期刊论文

Kinetics and mechanisms of reactions for hydrated electron with chlorinated benzenes in aqueous solution

Haixia YUAN,Huxiang PAN,Jin SHI,Hongjing LI,Wenbo DONG

期刊论文

Hydroxyl radical-involved cancer therapy via Fenton reactions

期刊论文

Special issue on “Green chemical process and intensification”

期刊论文

Special Issue for the Future Chemical Engineering Scholars of Global Chinese Chemical Engineering Symposium

期刊论文

Insight of chemical environmental risk and its management from the vinyl chloride accident

期刊论文